Nonabelian Cryptography

Boaz Tsaban

Bar-Ilan University

Secure Implementation of Post-Quantum Cryptography Sep '16

Key Exchange Protocols

Alice and Bob establish a secret key over an insecure channel.

Diffie-Hellman 1976. DLP in finite fields.

Rivest-Shamir-Adleman (RSA, 1978). Factorization.

Poor performance vs security tradeoff; no long-term security.

Joux et al.: Subexp algorithms for DLP in some elliptic curves.

Quantum computers break them all.

Alternatives: (1) Lattice-based; (2) nonabelian-based.

Nonabelian Diffie-Hellman

Diffie-Hellman 1976.

Alice Public Bob
$$a \in \{0,1,\ldots,p-1\} \qquad G = \langle g \rangle, \ |G| = p \qquad b \in \{0,1,\ldots,p-1\}$$

$$g^a$$

$$K = \left[g^b \right]^a = g^{ab}$$

$$K = \left[g^{a}\right]^{b} = g^{ab}$$

Nonabelian Diffie-Hellman

Ko-Lee-Cheon-Han-Kang-Park 2000. G nonabelian.

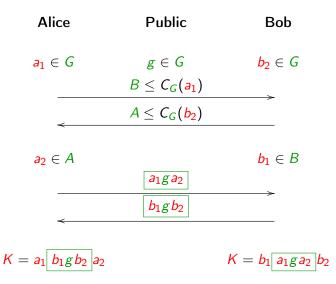
$$g^x := x^{-1}gx.$$

Alice	Public	Bob
<i>a</i> ∈ <i>A</i>	$A, B \leq G, g \in G, [A, B] = 1$	b ∈ B
	g ^a	>
<	g ^b	

$$K = \left[g^b\right]^a = g^{ba}$$

$$K = \left[g^a\right]^b = g^{ab}$$

Centralizer KE (Shpilrain–Ushakov 2006)



Commutator KE (Anshel-Anshel-Goldfeld 1999)

Alice Public Bob
$$v(x_1, \dots, x_k) \in F_k \qquad \langle a_1, \dots, a_k \rangle \leq G \qquad w(x_1, \dots, x_k) \in F_k$$

$$a = v(a_1, \dots, a_k) \qquad \langle b_1, \dots, b_k \rangle \leq G \qquad b = w(b_1, \dots, b_k)$$

$$b_1^a, \dots, b_k^a$$

$$a^{-1}v(a_1^b, \dots, a_k^b) \qquad w(b_1^a, \dots, b_k^a)^{-1}b$$

$$a^{-1}v(a_1^b, \dots, a_k^b) = a^{-1}a^b = a^{-1}b^{-1}ab = (b^a)^{-1}b = w(b_1^a, \dots, b_k^a)^{-1}b$$

Triple Decomposition KE (Kurt 2005)

Faithful representations

All mentioned KEPs suggest using the Braid group B_N .

Lawrence-Krammer. LK: $B_N \longrightarrow GL_n(\mathbb{Z}[t^{\pm 1}, \frac{1}{2}])$.

$$n=\binom{N}{2}$$
.

Bigelow 2001 (JAMS), Krammer 2002 (Annals): LK representation is faithful.

Cheon-Jun 2003.

- 1. LK Evaluation: Fast. Inversion: N^6 (acceptable).
- 2. ... May work in the image of B_N in $GL_n(\mathbb{Z}[t^{\pm 1}, \frac{1}{2}])$.
- 3. Take out common denominator.
- 4. Mod by large p and irreducible f(t), len(ℓ) and $d := \deg(f)$ polynomial in the security parameter.
- 5. Key recoverable from its image in \mathbb{F}_{p^d} .
- \therefore May work in $GL_n(\mathbb{F})$; \mathbb{F} a finite field.

Algebraic spans

Assume $G = \langle g_1, \dots, g_k \rangle \leq M = M_n(\mathbb{F})$.

For $S \subseteq M_n(\mathbb{F})$, Alg(S) := algebra generated by <math>S.

 $Alg(G) = span_{\mathbb{F}}(G)$, a vector space.

Finding a basis B of Alg(G) in time kn^6 :

- 1. B := (I), the identity matrix.
- 2. For i = 1, 2, ...:
 - 2.1 b := B(i).
 - 2.2 For j = 1, ..., k: if $bg_i \notin \text{span } B$, append it to B.
 - 2.3 Stop when reaching the end of the list.

Algebraic span cryptanalysis

$$G_1,\ldots,G_k\leq \operatorname{GL}_n(\mathbb{F}); g_1\in G_1,\ldots,g_k\in G_k.$$

Given: linear equations on the entries of g_1, \ldots, g_k .

Need to find $f(g_1, \ldots, g_k)$.

Instead of solving subject to

$$g_1 \in G_1, \ldots, g_k \in G_k,$$

solve subject to the linear constraints

$$g_1 \in Alg(G_1), \ldots, g_k \in Alg(G_k).$$

Pray (or prove) that every solution $\tilde{g}_1,\ldots,\tilde{g}_k$ satisfies

$$f(\tilde{g}_1,\ldots,\tilde{g}_k)=f(g_1,\ldots,g_k).$$

This often works!

Application 1: Nonabelian Diffie-Hellman

Alice Public Bob
$$a \in A \qquad A, B \leq G, g \in G, [A, B] = 1 \qquad b \in B$$

$$g^{a}$$

$$g^{b}$$

$$K = g^b = g^{ba}$$
 $K = g^a = g^{ab}$ $K = g^a = g^{ab}$ Solve $g^a = a \cdot g^a$, $a \in Alg(A)$. \Rightarrow invertible solution \tilde{a} .

$$g^b$$
 g^{b} g^{b}

Finding an invertible solution

Problem. Find an invertible matrix in a subspace of $M_n(\mathbb{F})$.

Heuristic. Pick "random" elements until invertible.

Lemma. Assume span $\{A_1,\ldots,A_m\}\cap \mathsf{GL}_n(\mathbb{F})\neq 0$. Then

$$\Pr(|x_1A_1+\cdots+x_mA_m|\neq 0)\geq 1-\frac{n}{|\mathbb{F}|}.$$

Proof: $f(x_1, ..., x_m) := |x_1A_1 + \cdots + x_mA_m| \in \mathbb{F}[x_1, ..., x_m]$, nonzero, degree n.

Schwartz-Zippel Lemma.

 $f(x_1,\ldots,x_m)\in\mathbb{F}[x_1,\ldots,x_m]$ nonzero, degree n.

$$\Pr(f(x_1,\ldots,x_m)\neq 0)\geq 1-\frac{n}{|\mathbb{F}|}.$$

In our case, $|\mathbb{F}| \gg n$.

Example 2: Centralizer KEP

$$g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$$

Need: $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

1. Solve

$$a_1g = a_1ga_2 \cdot a_2^{-1}$$

 $a_1b = ba_1 \quad (b \in Generators(B)).$

with $a_2^{-1} \in Alg(A)$ invertible.

- 2. \exists solution: (a_1, a_2^{-1}) . Let $(\tilde{a}_1, \tilde{a}_2^{-1})$ be one.
- 3. $\tilde{a}_1 b_1 g_2 \tilde{a}_2 \stackrel{!}{=} b_1 \tilde{a}_1 g_2 \tilde{a}_2 b_2 = b_1 a_1 g_2 a_2 b_2 = K!$

Example 3: Commutator KEP

$$\mathbf{a} \in \langle a_1, \ldots, a_k \rangle, \mathbf{b} \in \langle b_1, \ldots, b_k \rangle \leq G \leq \mathsf{GL}_n(\mathbb{F}).$$

Need: $(b_1^a, \ldots, b_k^a, a_1^b, \ldots, a_k^b) \mapsto a^{-1}b^{-1}ab$.

1. Solve

$$b_{1}a = a \cdot b_{1}^{a} \qquad a_{1}b = b \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}a = a \cdot b_{k}^{a} \qquad a_{k}b = b \cdot a_{k}^{b}$$

with $\mathbf{a} \in \mathsf{Alg}(a_1, \dots, a_k)$, $\mathbf{b} \in \mathsf{Alg}(b_1, \dots, b_k)$, both invertible.

- 2. \exists solution: (a, b). Let (\tilde{a}, \tilde{b}) be one.
- 3. $\tilde{a}^{\tilde{b}} = \tilde{a}^{b}$ since $\tilde{a} \in Alg(a_1, \dots, a_k)$. Similarly, $b^{\tilde{a}} = b^{a}$.
- 4. $\tilde{a}^{-1}\tilde{b}^{-1}\tilde{a}\tilde{b} = \tilde{a}^{-1}\tilde{a}^{\tilde{b}} = \tilde{a}^{-1}\tilde{a}^{b} = \tilde{a}^{-1}b^{-1}\tilde{a}b = (b^{\tilde{a}})^{-1}b = (b^{\tilde{a}})^{-1}b = a^{-1}b^{-1}ab!$

Reminder: Triple Decomposition KE (Kurt 2005)

 $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ Y_1 & Y_2 & B_1 & B_2 & B \end{vmatrix} \leq G \qquad y_1, y_2, b_1, b_2, b_1$ a, a_1, a_2, x_1, x_2 $ax_1 |, |x_1^{-1}a_1x_2|, |x_2^{-1}a_2|$ $b_1y_1 |, |y_1^{-1}b_2y_2|, |y_2^{-1}b|$ $\begin{vmatrix} a & b_1 y_1 & a_1 & y_1^{-1} b_2 y_2 & a_2 & y_2^{-1} b \end{vmatrix} = \underbrace{ab_1 a_1 b_2 a_2 b}_{a_1} = \begin{vmatrix} a x_1 & b_1 & x_1^{-1} a_1 x_2 & b_2 & x_2^{-1} a_2 \end{vmatrix} b$

Public

Bob

The triple products do not provide linear equations!

Without them we fail!

Alice

Cryptanalysis of Triple Dec KE (Ben Zvi-Kalka-Ts.)

$$\mathsf{Alg}(B_1)_{y_1} = \mathsf{Alg}(B_1) \cdot \boxed{b_1 y_1}$$

$$A\lg(B_2 \cup Y_2)y_1 = A\lg(B_2 \cup Y_2) \cdot y_2^{-1}b_2^{-1}y_1 = A\lg(B_2 \cup Y_2) \cdot \left[y_1^{-1}b_2y_2\right]^{-1}$$

$$A\lg(A_2)x_2 = A\lg(A_2) \cdot a_2^{-1}x_2 = A\lg(A_2) \cdot \left[x_2^{-1}a_2\right]^{-1}$$

$$\mathsf{Alg}(A_1 \cup X_1) \mathbf{x_2} = \mathsf{Alg}(A_1 \cup X_1) \cdot \left[\mathbf{x_1^{-1} a_1 x_2} \right]$$

Pick invertible

$$\widetilde{y}_1 \in \mathsf{Alg}(Y_1) \cap \mathsf{Alg}(B_1)y_1 \cap \mathsf{Alg}(B_2 \cup Y_2)y_1;$$

$$\widetilde{x}_2 \in \mathsf{Alg}(X_2) \cap \mathsf{Alg}(A_2)x_2 \cap \mathsf{Alg}(A_1 \cup X_1)x_2.$$

$$\underbrace{ax_1} \cdot \underbrace{b_1 y_1} \cdot \tilde{y}_1^{-1} \cdot \underbrace{x_1^{-1} a_1 x_2} \cdot \tilde{x}_2^{-1} \cdot \tilde{y}_1 \cdot \underbrace{y_1^{-1} b_2 y_2} \cdot \tilde{x}_2 \cdot \underbrace{x_2^{-1} a_2} \cdot \underbrace{y_2^{-1} b}$$
 gives (intricate proof) $ab_1 a_1 b_2 a_2 b = K!$

(Alternatively, could check empirically.)

Intermediate (?) discussion

Not the end of nonabelian cryptography:

- 1. Additional nonabelian proposals (Dehornoy et al., Kalka, ...).
- 2. Additional problems (CSP, Multiple CSP,...) to build upon.
- 3. Groups with no small-dim representations.
- 4. The application of my methods keeps getting harder as new systems emerge (cf. recent cryptanalysis of Algebraic Eraser).
- Psychological cryptography: We don't break because we fail to find a polytime attack (cf. SHA3).

Part II: PILES of salt!

The shortest description ever for a hash function

 $A, B \in M_n(\mathbb{F}).$

Hashing $\{0,1\}^* \to M_n(\mathbb{F})$: Replace 0 by A, 1 by B, and multiply.

Example: h(00101) = AABAB.

Probably more efficient than other (Lattice-based) provable hash functions.

Security of homomorphic (Cayley) hash

Focus on $|\mathbb{F}| = 2^n$.

Efficient cryptanalysis for few pairs A, B, including

$$\begin{pmatrix} \alpha & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} \alpha + 1 & 1 \\ 1 & 0 \end{pmatrix}$$

In general, there is a subexp attack, but *less efficient than generic ones*.

Mullan-Ts. '16: Worst-case to average-case reduction (aka random self-reducibility).

Best attack: $2^{n/2}$.

Challenge: Attack. Do QCs help?

TS Hash: How about that?

$$S(x_n,\ldots,x_1):=(0,\ldots,0,x_n,\ldots,x_{k+2},x_{k+1}),$$

k minimal with $x_k = 1$.

Fix random known vectors $v, v_0, v_1 \in \{0, 1\}^n$.

$$T_i(u) := u \oplus v_i$$
.

$$h(b_{l}, b_{l-1}, \dots, b_{2}, b_{1}) := T_{b_{l}} S T_{b_{l-1}} \cdots T_{b_{2}} S T_{b_{1}} S(v)$$

$$= S(\cdots (S(S(v) \oplus v_{b_{1}}) \oplus v_{b_{2}}) \cdots) \oplus v_{b_{l}}.$$

Challenge: Break this.

Classically secure nonabelian schemes seem to be automatically QC secure.

THANK YOU!