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t Incorrect cryptographic protocol implementation and malware 
attacks targeting its runtime may lead to insecure execution 
even if the protocol design has been proven safe. 

This research focuses on adapting a 
Runtime-Verification-centric Trusted Execution environment 
(RV-TEE) solution to a quantum-future cryptographic protocol 
deployment.

We aim to show that our approach is practical through an 
instantiation of a trusted execution environment supported by 
runtime verification and any hardware security module 
compatible with commodity hardware.



GAKE: Group Authentication Key Exchange protocols are essential for 
constructing secure channels of communication between multiple parties over an 
insecure infrastructure.

Quantum-future: Systems that result in the protection of message confidentiality 
from delayed data attacks using eventual quantum power, but not protecting from 
active quantum adversaries.



This research provides

1. A group chat app case study which uses the quantum-future GAKE 
protocol from Gonzalez Vasco et al.

2. An implementation of the GAKE protocol employing SEcube™, a 
resource-constrained hardware security module.

3. The RV setup tailored for the protocol's properties using the 
automata-based LARVA RV tool.

4. An empirical evaluation of the setup focusing on the user 
experience of the chat app demonstrating the practicality of the 
RV-TEE setup.



The need for secure collaboration

As the COVID-19 pandemic lockdown forced most employees into remote 
working, serious weaknesses in Zoom were exposed. Issues ranged from insecure 
key establishment to inadequate block cipher mode usage. 

Other previous high-profile incidents concerning insecure cryptographic protocol 
implementation were caused by:

● Weak randomness.
● Insufficient checks on protocol compliance.
● Memory corruption bugs.



RV-TEE

Secure implementation via a TEE is specifically provided through an 
instantiation of RV-TEE, which combines the use of two components: 

1. Runtime Verification (RV), a dynamic formal verification extension 
to static model checking.

2. A Hardware Security Module (HSM) of choice to provide an 
isolated execution environment, possibly equipped with 
tamper-evident features.



Separate roles

The remit of RV is primarily the verification of correct protocol usage by 
conferencing/collaborative applications, as well as the protocol implementation 
itself.

The HSM protects the execution of code associated with secret/private keys from 
malware infection while avoiding stock hardware side-channels. 

Furthermore, RV is also tasked with monitoring data flows between the HSM and 
stock hardware.





Elevated level of trust through the RV-TEE Setup

Most stock hardware nowadays comes equipped with CPUs having TEE 
extensions based on encrypted memory to provide software enclaves, and which 
could also be a suitable choice for the HSM if deemed fit. 

The entire RV-TEE setup provides better trust through:

● Application and protocol implementation verification using RV.
● Use the trusted HSM of choice to isolate from malware and stock hardware 

side-channels.
● RV securing the HSM/stock hardware boundaries.



Levels of concern: Software

● Highest: exploiting logical bugs causing the protocol 
implementation to deviate from the design.

● Medium: attacks targeting the secrecy of symmetric/private keys, 
along with the unavailability of plaintext without first breaking 
encryption.

● Lowest: Vulnerabilities originating from programming bugs, 
resulting in the deductibility of secrets.



Levels of concern: Hardware

Beneath the software threat levels, are those at the hardware level. 
These can pose a threat if the manufacturer cannot be trusted.

This can be particularly of concern if the hardware itself is a primitive 
for secure execution, is widely deployed and an application's 
implementation is specific to it. 

In this respect, RV-TEE is designed with HSM flexibility in mind.



Runtime Verification

Provides two primary benefits:

1. Monitors are typically automatically synthesised from formal notation to 
reduce the possibility of introducing bugs.

2. Monitoring concerns are kept separate (at least on a logical level) from the 
observed system. 

In our case study we use LARVA: properties are specified using LARVA scripts that 
capture a textual representation of symbolic timed-automata.



Industry-grade critical enablers

LARVA RV has been used extensively for verifying the correct operation of 
high-volume financial transactions systems.

SEcube™ HSM is integrated in various devices, several open-source 
projects build upon its Open SDK to demonstrate its employment in 
academic research.

Cortex-M4 MCU has an extensive body of work focusing on optimised 
cipher implementation that cover both post-quantum cryptography, as well 
as standard symmetric encryption.



Runtime verification properties

Property layers Chat app Library All (incl. Primitives)

Assertion Printable decrypted 
characters

Sensitive data scrubbed Valid function 
parameters and returns

Temporal Chatroom lifecycle, 
standard sockets

Correct function call 
sequence

Hyper Randomness quality



Properties

Function input/output: valid inputs and output (with respect to the inputs).

Data scrubbing: sensitive data is properly destroyed after use, once secure 
communication is established.

Sequences of actions: permitted by protocol participants depending on the 
context. In our case study, the protocol follows a high level sequence of rounds.

Randomness: high quality random number generation.

Application-specific: dealing with the chatroom lifecycle.



Instrumentation overview

Chat app
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files
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  /**
   * Called synchronously when about to call get_participant_by_id.
   * struct _participant* get_participant_by_id(
   *    const struct _protocol_run* p_run, const uint8_t* id);
   */
  onEnter(log, args, state) {
    this.prun = args[0];
    pest_log(log, 
      `get_participant_by_id(p_run=${this.prun}, id=${args[1].readU8().toString()})`
    );
  }

  /**
   * Called synchronously when about to return from get_participant_by_id.
   */
  onLeave(log, retval, state) {
    pest_log(log, `get_participant_by_id() retVal: ${retval}`);
    if (this.prun != get_prun_by_participant(log, retval))
      pest_warn(log, `unknown participant ${retval} for protocol run ${this.prun}`);
  }



STATES {
  BAD {
      bad{System.out.println("Wrong");}
  }
  NORMAL {
      round1{System.out.println("Started round 1");}
      ...
  }
  STARTING {
      round1{System.out.println("Started round 1");}
  }
}
TRANSITIONS {
  ...
  init_protocol_run_env -> bad[init_protocol_run_env]
  init_protocol_run_env -> init_participant[init_participant]
  init_protocol_run_env -> bad[round_one]
  init_protocol_run_env -> bad[load_pw]
  ...
}



Scenarios

Scenario A: 3 clients involved, with the monitored client creating a room
following the protocol steps for an initiator participant U0

Scenario B: 3 clients involved, with the monitored client joining the room
following the protocol steps for a non-initiator participant U1≤i≤n

The scenarios include 20 and 13 seconds of thread sleeps respectively to mimic a 
realistic chat. This will be factored in in the results discussion.



/sleep 6
/room enter ROOMNAME
/sleep 1
secure msg from one
/sleep 3
goodbye (1)
/sleep 3
/exit

Scenario B: Commands for monitored client



Instrumentation overheads

Time (s) Without SEcube™ Using SEcube™

Scenario A B All A B All

Non-instrumented 20.02 13.01 33.03 20.18 13.27 33.45

Instrumented 20.44 14.39 34.83 21.30 13.68 34.98

Increase 0.44 1.38 1.70 1.12 0.41 1.53



Runtime verification empirical results

RV checked 6 properties: 3 classified as control flow, and 3 as data properties.

The control flow properties checked the sequence of actions for the protocol and 
chat app execution, while the third property kept track of sockets being written to, 
reporting any suspicious ones.

The data flow properties involved checking data is scrubbed, basic assessment of 
the quality of the generated random numbers, and checking that all input 
characters are printable.



Discussion

1. The empirical results indicate that the overheads introduced by the 
instrumentation and the HSM are non-negligible. 

2. However, in this work, our main aim was to show the feasibility of 
the approach rather than to have an optimal solution.



Efficiency improvements

● We use frida-trace at the level of JS not only for setting up in-line 
hooks dynamically, but also for the instrumentation code itself that 
records the events of interest. The use of natively compiled code 
would make this faster (but require more extensive testing).

● The instrumentation gathered all events which could be useful for 
RV. This provided us with experimental flexibility at the expense of 
higher overheads.

● We foresee substantial immediate gains if we minimise the use of 
JS and limit the events to those strictly needed.



Limitations

● Present implementation does not contain protection against side-channel attacks 
beyond the immediate protection derived from stock hardware isolation. We plan 
to address the issue in future work.

● We performed all verification asynchronously. Since the time required for the 
actual verification is small, this could be done online and in sync with the chat app 
execution. If heavier RV is needed (e.g., more thorough randomness checking), 
properties could be split into two categories: 
○ state checks (monitored synchronously)
○ data checks (monitored asynchronously).



Conclusion

Insecure execution of theoretically-proven communication protocols is 
still a major concern, due to vulnerabilities at the various levels of the 
implementation. With the advancements of quantum computers, novel 
quantum-safe protocols are inevitable. 

We proposed an RV-TEE instantiation for the quantum-future GAKE 
protocol from Gonzalez Vasco et al., securing the protocol 
implementation from the hardware level, up till the logical level of the 
application utilising it. 

Through an empirical evaluation based on a chat application case 
study, we show the feasibility of the approach involving substantial 
overhead, yet with minimal to no impact from a usability perspective.
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