
Secure Implementation of a
Quantum-Future GAKE Protocol*
R. Abela, C. Colombo, P. Malo, P. Sýs, T. Fabšič, O. Gallo, V. Hromada, and M. Vella

* This work is supported by the NATO Science for Peace and Security Programme through
project G5448 Secure Communication in the Quantum Era.

A
bs

tr
ac

t Incorrect cryptographic protocol implementation and malware
attacks targeting its runtime may lead to insecure execution
even if the protocol design has been proven safe.

This research focuses on adapting a
Runtime-Verification-centric Trusted Execution environment
(RV-TEE) solution to a quantum-future cryptographic protocol
deployment.

We aim to show that our approach is practical through an
instantiation of a trusted execution environment supported by
runtime verification and any hardware security module
compatible with commodity hardware.

GAKE: Group Authentication Key Exchange protocols are essential for
constructing secure channels of communication between multiple parties over an
insecure infrastructure.

Quantum-future: Systems that result in the protection of message confidentiality
from delayed data attacks using eventual quantum power, but not protecting from
active quantum adversaries.

This research provides

1. A group chat app case study which uses the quantum-future GAKE
protocol from Gonzalez Vasco et al.

2. An implementation of the GAKE protocol employing SEcube™, a
resource-constrained hardware security module.

3. The RV setup tailored for the protocol's properties using the
automata-based LARVA RV tool.

4. An empirical evaluation of the setup focusing on the user
experience of the chat app demonstrating the practicality of the
RV-TEE setup.

The need for secure collaboration

As the COVID-19 pandemic lockdown forced most employees into remote
working, serious weaknesses in Zoom were exposed. Issues ranged from insecure
key establishment to inadequate block cipher mode usage.

Other previous high-profile incidents concerning insecure cryptographic protocol
implementation were caused by:

● Weak randomness.
● Insufficient checks on protocol compliance.
● Memory corruption bugs.

RV-TEE

Secure implementation via a TEE is specifically provided through an
instantiation of RV-TEE, which combines the use of two components:

1. Runtime Verification (RV), a dynamic formal verification extension
to static model checking.

2. A Hardware Security Module (HSM) of choice to provide an
isolated execution environment, possibly equipped with
tamper-evident features.

Separate roles

The remit of RV is primarily the verification of correct protocol usage by
conferencing/collaborative applications, as well as the protocol implementation
itself.

The HSM protects the execution of code associated with secret/private keys from
malware infection while avoiding stock hardware side-channels.

Furthermore, RV is also tasked with monitoring data flows between the HSM and
stock hardware.

Elevated level of trust through the RV-TEE Setup

Most stock hardware nowadays comes equipped with CPUs having TEE
extensions based on encrypted memory to provide software enclaves, and which
could also be a suitable choice for the HSM if deemed fit.

The entire RV-TEE setup provides better trust through:

● Application and protocol implementation verification using RV.
● Use the trusted HSM of choice to isolate from malware and stock hardware

side-channels.
● RV securing the HSM/stock hardware boundaries.

Levels of concern: Software

● Highest: exploiting logical bugs causing the protocol
implementation to deviate from the design.

● Medium: attacks targeting the secrecy of symmetric/private keys,
along with the unavailability of plaintext without first breaking
encryption.

● Lowest: Vulnerabilities originating from programming bugs,
resulting in the deductibility of secrets.

Levels of concern: Hardware

Beneath the software threat levels, are those at the hardware level.
These can pose a threat if the manufacturer cannot be trusted.

This can be particularly of concern if the hardware itself is a primitive
for secure execution, is widely deployed and an application's
implementation is specific to it.

In this respect, RV-TEE is designed with HSM flexibility in mind.

Runtime Verification

Provides two primary benefits:

1. Monitors are typically automatically synthesised from formal notation to
reduce the possibility of introducing bugs.

2. Monitoring concerns are kept separate (at least on a logical level) from the
observed system.

In our case study we use LARVA: properties are specified using LARVA scripts that
capture a textual representation of symbolic timed-automata.

Industry-grade critical enablers

LARVA RV has been used extensively for verifying the correct operation of
high-volume financial transactions systems.

SEcube™ HSM is integrated in various devices, several open-source
projects build upon its Open SDK to demonstrate its employment in
academic research.

Cortex-M4 MCU has an extensive body of work focusing on optimised
cipher implementation that cover both post-quantum cryptography, as well
as standard symmetric encryption.

Runtime verification properties

Property layers Chat app Library All (incl. Primitives)

Assertion Printable decrypted
characters

Sensitive data scrubbed Valid function
parameters and returns

Temporal Chatroom lifecycle,
standard sockets

Correct function call
sequence

Hyper Randomness quality

Properties

Function input/output: valid inputs and output (with respect to the inputs).

Data scrubbing: sensitive data is properly destroyed after use, once secure
communication is established.

Sequences of actions: permitted by protocol participants depending on the
context. In our case study, the protocol follows a high level sequence of rounds.

Randomness: high quality random number generation.

Application-specific: dealing with the chatroom lifecycle.

Instrumentation overview

Chat app

JS
files

frida-trace
Log
file

LARVA

LARVA
scripts

Output

cmds

 /**
 * Called synchronously when about to call get_participant_by_id.
 * struct _participant* get_participant_by_id(
 * const struct _protocol_run* p_run, const uint8_t* id);
 */
 onEnter(log, args, state) {
 this.prun = args[0];
 pest_log(log,
 `get_participant_by_id(p_run=${this.prun}, id=${args[1].readU8().toString()})`
);
 }

 /**
 * Called synchronously when about to return from get_participant_by_id.
 */
 onLeave(log, retval, state) {
 pest_log(log, `get_participant_by_id() retVal: ${retval}`);
 if (this.prun != get_prun_by_participant(log, retval))
 pest_warn(log, `unknown participant ${retval} for protocol run ${this.prun}`);
 }

STATES {
 BAD {
 bad{System.out.println("Wrong");}
 }
 NORMAL {
 round1{System.out.println("Started round 1");}
 ...
 }
 STARTING {
 round1{System.out.println("Started round 1");}
 }
}
TRANSITIONS {
 ...
 init_protocol_run_env -> bad[init_protocol_run_env]
 init_protocol_run_env -> init_participant[init_participant]
 init_protocol_run_env -> bad[round_one]
 init_protocol_run_env -> bad[load_pw]
 ...
}

Scenarios

Scenario A: 3 clients involved, with the monitored client creating a room
following the protocol steps for an initiator participant U0

Scenario B: 3 clients involved, with the monitored client joining the room
following the protocol steps for a non-initiator participant U1≤i≤n

The scenarios include 20 and 13 seconds of thread sleeps respectively to mimic a
realistic chat. This will be factored in in the results discussion.

/sleep 6
/room enter ROOMNAME
/sleep 1
secure msg from one
/sleep 3
goodbye (1)
/sleep 3
/exit

Scenario B: Commands for monitored client

Instrumentation overheads

Time (s) Without SEcube™ Using SEcube™

Scenario A B All A B All

Non-instrumented 20.02 13.01 33.03 20.18 13.27 33.45

Instrumented 20.44 14.39 34.83 21.30 13.68 34.98

Increase 0.44 1.38 1.70 1.12 0.41 1.53

Runtime verification empirical results

RV checked 6 properties: 3 classified as control flow, and 3 as data properties.

The control flow properties checked the sequence of actions for the protocol and
chat app execution, while the third property kept track of sockets being written to,
reporting any suspicious ones.

The data flow properties involved checking data is scrubbed, basic assessment of
the quality of the generated random numbers, and checking that all input
characters are printable.

Discussion

1. The empirical results indicate that the overheads introduced by the
instrumentation and the HSM are non-negligible.

2. However, in this work, our main aim was to show the feasibility of
the approach rather than to have an optimal solution.

Efficiency improvements

● We use frida-trace at the level of JS not only for setting up in-line
hooks dynamically, but also for the instrumentation code itself that
records the events of interest. The use of natively compiled code
would make this faster (but require more extensive testing).

● The instrumentation gathered all events which could be useful for
RV. This provided us with experimental flexibility at the expense of
higher overheads.

● We foresee substantial immediate gains if we minimise the use of
JS and limit the events to those strictly needed.

Limitations

● Present implementation does not contain protection against side-channel attacks
beyond the immediate protection derived from stock hardware isolation. We plan
to address the issue in future work.

● We performed all verification asynchronously. Since the time required for the
actual verification is small, this could be done online and in sync with the chat app
execution. If heavier RV is needed (e.g., more thorough randomness checking),
properties could be split into two categories:
○ state checks (monitored synchronously)
○ data checks (monitored asynchronously).

Conclusion

Insecure execution of theoretically-proven communication protocols is
still a major concern, due to vulnerabilities at the various levels of the
implementation. With the advancements of quantum computers, novel
quantum-safe protocols are inevitable.

We proposed an RV-TEE instantiation for the quantum-future GAKE
protocol from Gonzalez Vasco et al., securing the protocol
implementation from the hardware level, up till the logical level of the
application utilising it.

Through an empirical evaluation based on a chat application case
study, we show the feasibility of the approach involving substantial
overhead, yet with minimal to no impact from a usability perspective.

Thank you
robert.abela@um.edu.mt

