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t Incorrect cryptographic protocol implementation and 

malware attacks targeting its runtime may lead to insecure 

execution even if the protocol design has been proven 

safe. 

This research focuses on adapting a Runtime-Verification-

centric Trusted Execution Environment (RV-TEE) solution to 

a quantum-future cryptographic protocol deployment.

We aim to show that our approach is practical through an 

instantiation of a trusted execution environment supported 

by runtime verification and any hardware security 

module compatible with commodity hardware.



GAKE: Group Authentication Key Exchange protocols are essential for 

constructing secure channels of communication between multiple parties over an 

insecure infrastructure.

Quantum-future: Systems that result in the protection of message confidentiality 

from delayed data attacks using eventual quantum power, but not protecting from 

active quantum adversaries.



This research provides

1. A group chat app case study which uses the quantum-future 

GAKE protocol from Gonzalez Vasco et al.

2. An implementation of the GAKE protocol employing SEcube™, 

a resource-constrained Hardware Security Module (HSM).

3. The RV setup tailored for the protocol's properties using the 

automata-based LARVA RV tool.

4. An empirical evaluation of the setup focusing on the user 

experience of the chat app demonstrating the practicality of 

the RV-TEE setup.



The need for secure collaboration

As the COVID-19 pandemic lockdown forced most employees into remote 

working, serious weaknesses in Zoom were exposed. Issues ranged from insecure 

key establishment to inadequate block cipher mode usage. 

Other previous high-profile incidents concerning insecure cryptographic protocol 

implementation were caused by:

● Weak randomness.

● Insufficient checks on protocol compliance.

● Memory corruption bugs.



RV-TEE

Secure implementation via a TEE is specifically provided through an 

instantiation of RV-TEE, which combines the use of two components: 

1. RV, a dynamic formal verification extension to static model 

checking.

2. A HSM of choice to provide an isolated execution environment, 

possibly equipped with tamper-evident features.



Defining the roles

The remit of RV is primarily the verification of correct protocol usage by 
conferencing/collaborative applications, as well as the protocol implementation 
itself.

The HSM protects the execution of code associated with secret/private keys from 
malware infection while avoiding stock hardware side-channels. 

Furthermore, in the future RV could also tasked with monitoring data flows 
between the HSM and stock hardware.
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Elevated level of trust through RV-TEE 

Most stock hardware nowadays is equipped with CPUs having TEE extensions 

based on encrypted memory to provide software enclaves, and which could also 

be a suitable choice for the HSM if deemed fit. 

The entire RV-TEE setup provides better trust through:

● Application and protocol implementation verification using RV.

● Use the trusted HSM of choice to isolate from malware and stock hardware 

side-channels.

● RV securing the HSM/stock hardware boundaries.



Levels of concern: Software

● Highest: exploiting logical bugs causing the protocol implementation 

to deviate from the design.

● Medium: attacks targeting the secrecy of symmetric/private keys, 

along with the unavailability of plaintext without first breaking 

encryption.

● Lowest: Vulnerabilities originating from programming bugs, resulting 

in the deductibility of secrets.



Levels of concern: Hardware

Hardware level threat happen if the manufacturer cannot be trusted.

This can be particularly of concern if the hardware itself is a primitive 

for secure execution, is widely deployed and an application's 

implementation is specific to it. 

In this respect, RV-TEE is designed with HSM flexibility in mind.



Runtime Verification

Provides two primary benefits:

1. Monitors are typically automatically synthesised from formal notation to 

reduce the possibility of introducing bugs.

2. Monitoring concerns are kept separate (at least on a logical level) from the 

observed system. 

In our case study we use LARVA: properties are specified using LARVA scripts 

that capture a textual representation of symbolic timed-automata.



Industry-grade critical enablers

frida-trace used for function hooking and memory monitoring.

LARVA RV is used for verifying the correct operation of high-volume 

financial transactions systems.

SEcube™ HSM is integrated in various devices, several open-source 

projects demonstrate its employment in academic research.

Cortex-M4 MCU is sufficiently resourceful for PQ KEM implementation 



Runtime verification properties

Property 

Layers

Chat app GKE Library All (incl. Primitives)

Assertion Printable decrypted 

characters

Sensitive data 

scrubbed

Valid function 

parameters and 

returns

Temporal Chatroom lifecycle, 

standard sockets

Correct function call 

sequence

Hyper Randomness quality



Properties

Function input/output: valid inputs and output (with respect to the inputs).

Data scrubbing: sensitive data is properly destroyed after use, once secure 

communication is established.

Sequences of actions: permitted by protocol participants depending on the 

context. In our case study, the protocol follows a high level sequence of rounds.

Randomness: high quality random number generation.

Application-specific: dealing with the chatroom lifecycle.
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/** Called synchronously when about to call get_participant_by_id.
* struct _participant* get_participant_by_id(
*    const struct _protocol_run* p_run, const uint8_t* id); */

onEnter(log, args, state) {
this.prun = args[0];
pest_log(log, 

`get_participant_by_id(p_run=${this.prun}, id=${args[1].readU8().toString()})`
);

}

/** Called synchronously when about to return from get_participant_by_id. */
onLeave(log, retval, state) {
pest_log(log, `get_participant_by_id() retVal: ${retval}`);
if (this.prun != get_prun_by_participant(log, retval))

pest_warn(log, `unknown participant ${retval} for ${this.prun}`);
}



STATES {
BAD {

bad{System.out.println("Wrong");}
}
NORMAL {

round1{System.out.println("Started round 1");}
...

}
STARTING {

round1{System.out.println("Started round 1");}
}

}
TRANSITIONS {
...
init_protocol_run_env -> bad[init_protocol_run_env]
init_protocol_run_env -> init_participant[init_participant]
init_protocol_run_env -> bad[round_one]
init_protocol_run_env -> bad[load_pw]
...

}



Scenarios

Scenario A: 3 clients involved, with the monitored client creating a room

following the protocol steps for an initiator participant U0

Scenario B: 3 clients involved, with the monitored client joining the room

following the protocol steps for a non-initiator participant U1≤i≤n

The scenarios include 20 and 13 seconds of thread sleeps respectively to mimic a 

realistic chat. This will be factored in in the results discussion.



/sleep 6
/room enter ROOMNAME
/sleep 1
secure msg from one
/sleep 3
goodbye (1)
/sleep 3
/exit

Scenario B: Commands for monitored client



Instrumentation overheads

Time (s) Without SEcube™ Using SEcube™

Scenario A B All A B All

Non-instrumented 20.02 13.01 33.03 20.18 13.27 33.45

Instrumented 20.44 14.39 34.83 21.30 13.68 34.98

Increase 0.44 1.38 1.70 1.12 0.41 1.53



RV Empirical Results

RV checked 6 properties: 3 classified as control flow, 3 as data properties.

The control flow properties checked the sequence of actions for the protocol and 

chat app execution, while the third property kept track of sockets being written to, 

reporting any suspicious ones.

The data flow properties involved checking data is scrubbed, basic assessment of 

the quality of the generated random numbers, and checking that all input 

characters are printable.



Discussion

1. The empirical results indicate that the overheads introduced by the 

instrumentation and the HSM are non-negligible. 

2. However, in this work, our main aim was to show the feasibility of 

the approach rather than to have an optimal solution.



Efficiency improvements

● We use frida-trace (JS) not only for setting up in-line hooks 

dynamically, but also for the instrumentation code itself that 

records the events of interest. Natively compiled code would 

make this faster (but require more extensive testing).

● The instrumentation gathered all events which could be useful for 

RV. This provided us with experimental flexibility at the expense of 

higher overheads.

● We foresee substantial immediate gains if we minimise the use of 

JS and limit the events to those strictly needed.



Limitations

● Present implementation does not contain protection against side-channel attacks 

beyond the immediate protection derived from stock hardware isolation. We plan 

to address the issue in future work.

● We performed all verification asynchronously. Since the time required for the 

actual verification is small, this could be done online and in sync with the chat app 

execution. If heavier RV is needed (e.g., more thorough randomness checking), 

properties could be split into two categories: 

○ state checks (monitored synchronously)

○ data checks (monitored asynchronously).



Conclusion

Insecure execution of theoretically-proven communication protocols is 
still a major concern, due to vulnerabilities in implementation. With the 
advancements of quantum computers, novel quantum-safe protocols 
are inevitable. 

Our RV-TEE instantiation for the quantum-future GAKE protocol 
secures the protocol implementation at: hardware and application 
levels.

Through an empirical evaluation based on a chat application case 
study, we show the feasibility of the approach involving substantial 
overhead, yet with minimal impact from a usability perspective.
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