
Secure Implementation of a
Quantum-Future GAKE Protocol*
R. Abela, C. Colombo, P. Malo, P. Sýs, T. Fabšič, O. Gallo, V. Hromada, and M. Vella

* This work is supported by the NATO Science for Peace and Security Programme
through project G5448 Secure Communication in the Quantum Era.

A
b

s
tr

a
c

t Incorrect cryptographic protocol implementation and

malware attacks targeting its runtime may lead to insecure

execution even if the protocol design has been proven

safe.

This research focuses on adapting a Runtime-Verification-

centric Trusted Execution Environment (RV-TEE) solution to

a quantum-future cryptographic protocol deployment.

We aim to show that our approach is practical through an

instantiation of a trusted execution environment supported

by runtime verification and any hardware security

module compatible with commodity hardware.

GAKE: Group Authentication Key Exchange protocols are essential for

constructing secure channels of communication between multiple parties over an

insecure infrastructure.

Quantum-future: Systems that result in the protection of message confidentiality

from delayed data attacks using eventual quantum power, but not protecting from

active quantum adversaries.

This research provides

1. A group chat app case study which uses the quantum-future

GAKE protocol from Gonzalez Vasco et al.

2. An implementation of the GAKE protocol employing SEcube™,

a resource-constrained Hardware Security Module (HSM).

3. The RV setup tailored for the protocol's properties using the

automata-based LARVA RV tool.

4. An empirical evaluation of the setup focusing on the user

experience of the chat app demonstrating the practicality of

the RV-TEE setup.

The need for secure collaboration

As the COVID-19 pandemic lockdown forced most employees into remote

working, serious weaknesses in Zoom were exposed. Issues ranged from insecure

key establishment to inadequate block cipher mode usage.

Other previous high-profile incidents concerning insecure cryptographic protocol

implementation were caused by:

● Weak randomness.

● Insufficient checks on protocol compliance.

● Memory corruption bugs.

RV-TEE

Secure implementation via a TEE is specifically provided through an

instantiation of RV-TEE, which combines the use of two components:

1. RV, a dynamic formal verification extension to static model

checking.

2. A HSM of choice to provide an isolated execution environment,

possibly equipped with tamper-evident features.

Defining the roles

The remit of RV is primarily the verification of correct protocol usage by
conferencing/collaborative applications, as well as the protocol implementation
itself.

The HSM protects the execution of code associated with secret/private keys from
malware infection while avoiding stock hardware side-channels.

Furthermore, in the future RV could also tasked with monitoring data flows
between the HSM and stock hardware.

Application Architecture

Rest of

Network

Host SEcube™

Chat Application (C++) Primitives

Protocol Calculations

Hook

GKE Library (C)Hook

Log file RV - LARVA

Elevated level of trust through RV-TEE

Most stock hardware nowadays is equipped with CPUs having TEE extensions

based on encrypted memory to provide software enclaves, and which could also

be a suitable choice for the HSM if deemed fit.

The entire RV-TEE setup provides better trust through:

● Application and protocol implementation verification using RV.

● Use the trusted HSM of choice to isolate from malware and stock hardware

side-channels.

● RV securing the HSM/stock hardware boundaries.

Levels of concern: Software

● Highest: exploiting logical bugs causing the protocol implementation

to deviate from the design.

● Medium: attacks targeting the secrecy of symmetric/private keys,

along with the unavailability of plaintext without first breaking

encryption.

● Lowest: Vulnerabilities originating from programming bugs, resulting

in the deductibility of secrets.

Levels of concern: Hardware

Hardware level threat happen if the manufacturer cannot be trusted.

This can be particularly of concern if the hardware itself is a primitive

for secure execution, is widely deployed and an application's

implementation is specific to it.

In this respect, RV-TEE is designed with HSM flexibility in mind.

Runtime Verification

Provides two primary benefits:

1. Monitors are typically automatically synthesised from formal notation to

reduce the possibility of introducing bugs.

2. Monitoring concerns are kept separate (at least on a logical level) from the

observed system.

In our case study we use LARVA: properties are specified using LARVA scripts

that capture a textual representation of symbolic timed-automata.

Industry-grade critical enablers

frida-trace used for function hooking and memory monitoring.

LARVA RV is used for verifying the correct operation of high-volume

financial transactions systems.

SEcube™ HSM is integrated in various devices, several open-source

projects demonstrate its employment in academic research.

Cortex-M4 MCU is sufficiently resourceful for PQ KEM implementation

Runtime verification properties

Property

Layers

Chat app GKE Library All (incl. Primitives)

Assertion Printable decrypted

characters

Sensitive data

scrubbed

Valid function

parameters and

returns

Temporal Chatroom lifecycle,

standard sockets

Correct function call

sequence

Hyper Randomness quality

Properties

Function input/output: valid inputs and output (with respect to the inputs).

Data scrubbing: sensitive data is properly destroyed after use, once secure

communication is established.

Sequences of actions: permitted by protocol participants depending on the

context. In our case study, the protocol follows a high level sequence of rounds.

Randomness: high quality random number generation.

Application-specific: dealing with the chatroom lifecycle.

Instrumentation overview

Chat app

JS

files

frida-trace
Log

file

LARVA

LARVA

scripts

Output

cmds

/** Called synchronously when about to call get_participant_by_id.
* struct _participant* get_participant_by_id(
* const struct _protocol_run* p_run, const uint8_t* id); */

onEnter(log, args, state) {
this.prun = args[0];
pest_log(log,

`get_participant_by_id(p_run=${this.prun}, id=${args[1].readU8().toString()})`
);

}

/** Called synchronously when about to return from get_participant_by_id. */
onLeave(log, retval, state) {
pest_log(log, `get_participant_by_id() retVal: ${retval}`);
if (this.prun != get_prun_by_participant(log, retval))

pest_warn(log, `unknown participant ${retval} for ${this.prun}`);
}

STATES {
BAD {

bad{System.out.println("Wrong");}
}
NORMAL {

round1{System.out.println("Started round 1");}
...

}
STARTING {

round1{System.out.println("Started round 1");}
}

}
TRANSITIONS {
...
init_protocol_run_env -> bad[init_protocol_run_env]
init_protocol_run_env -> init_participant[init_participant]
init_protocol_run_env -> bad[round_one]
init_protocol_run_env -> bad[load_pw]
...

}

Scenarios

Scenario A: 3 clients involved, with the monitored client creating a room

following the protocol steps for an initiator participant U0

Scenario B: 3 clients involved, with the monitored client joining the room

following the protocol steps for a non-initiator participant U1≤i≤n

The scenarios include 20 and 13 seconds of thread sleeps respectively to mimic a

realistic chat. This will be factored in in the results discussion.

/sleep 6
/room enter ROOMNAME
/sleep 1
secure msg from one
/sleep 3
goodbye (1)
/sleep 3
/exit

Scenario B: Commands for monitored client

Instrumentation overheads

Time (s) Without SEcube™ Using SEcube™

Scenario A B All A B All

Non-instrumented 20.02 13.01 33.03 20.18 13.27 33.45

Instrumented 20.44 14.39 34.83 21.30 13.68 34.98

Increase 0.44 1.38 1.70 1.12 0.41 1.53

RV Empirical Results

RV checked 6 properties: 3 classified as control flow, 3 as data properties.

The control flow properties checked the sequence of actions for the protocol and

chat app execution, while the third property kept track of sockets being written to,

reporting any suspicious ones.

The data flow properties involved checking data is scrubbed, basic assessment of

the quality of the generated random numbers, and checking that all input

characters are printable.

Discussion

1. The empirical results indicate that the overheads introduced by the

instrumentation and the HSM are non-negligible.

2. However, in this work, our main aim was to show the feasibility of

the approach rather than to have an optimal solution.

Efficiency improvements

● We use frida-trace (JS) not only for setting up in-line hooks

dynamically, but also for the instrumentation code itself that

records the events of interest. Natively compiled code would

make this faster (but require more extensive testing).

● The instrumentation gathered all events which could be useful for

RV. This provided us with experimental flexibility at the expense of

higher overheads.

● We foresee substantial immediate gains if we minimise the use of

JS and limit the events to those strictly needed.

Limitations

● Present implementation does not contain protection against side-channel attacks

beyond the immediate protection derived from stock hardware isolation. We plan

to address the issue in future work.

● We performed all verification asynchronously. Since the time required for the

actual verification is small, this could be done online and in sync with the chat app

execution. If heavier RV is needed (e.g., more thorough randomness checking),

properties could be split into two categories:

○ state checks (monitored synchronously)

○ data checks (monitored asynchronously).

Conclusion

Insecure execution of theoretically-proven communication protocols is
still a major concern, due to vulnerabilities in implementation. With the
advancements of quantum computers, novel quantum-safe protocols
are inevitable.

Our RV-TEE instantiation for the quantum-future GAKE protocol
secures the protocol implementation at: hardware and application
levels.

Through an empirical evaluation based on a chat application case
study, we show the feasibility of the approach involving substantial
overhead, yet with minimal impact from a usability perspective.

Thank you
robert.abela@um.edu.mt

